Abstract
Wave Energy Converters (WECs) rely on effective Power Take-Off (PTO) control strategies to maximize energy absorption under dynamic sea conditions. Traditional hydrodynamic modeling techniques may require computationally intensive convolution calculations, making real-time control implementation challenging. This paper presents an alternative approach by leveraging instantaneous frequency estimation to dynamically adjust PTO damping in response to varying wave frequencies. Two real-time frequency estimation methods are explored: the Hilbert Transform (HT) and Phase-Locked Loop (PLL). The Hilbert Transform method provides accurate frequency tracking but introduces a delayed response due to its dependence on causal data. Conversely, the PLL approach demonstrates strong potential in frequency tracking but requires careful gain tuning, particularly in complex sea states. Comparative evaluations across multiple test cases—including sinusoidal variations, amplitude steps, frequency step changes, and real-world JONSWAP spectrum waves—highlight the strengths and limitations of each method. The two different PTO control techniques across the various frequency estimation methods were tested under real-sea states using a state-space model of a point-absorbing Wave Energy Converter. The Capture Width Ratio (CWR) is used as a performance metric, with results showing that the HT achieves a 10.6% improvement, while the PLL estimation yields a 0.9% improvement relative to the fixed parameter control baseline. These results highlight the effectiveness of real-time frequency estimation in improving energy absorption compared to static control parameters.