Abstract
The National Renewable Energy Laboratory manufactured, instrumented, and deployed thermoplastic composite blades and a data acquisition system (NDAQ) on one of Verdant Power’s Gen5d 5 m diameter tidal turbines in New York’s East River. The thermoplastic blades had internal strain gages, and the NDAQ was a stand-alone system for monitoring and recording the strain and angular position of the blades. The turbine with thermoplastic blades operated and produced power successfully for 3 months, contributing energy to the New York City electric grid. The NDAQ hardware, instrumentation, and structure all survived the deployment and were still functional upon retrieval of the system, but no data were collected. Even though the data retrieval was not a success, data acquisition for deployed subsea marine renewable structures is a new undertaking, and it is critical to share lessons learned from national laboratory experiences. The successful deployment of thermoplastic composite blades marks a significant advancement toward improved materials for subsea components, as well as an advancement in recyclable composite materials. This article outlines the methodology and lessons learned for the instrumentation and data acquisition system.